HOMOTOPY INERTIA GROUPS AND TANGENTIAL STRUCTURES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertia Groups and Fibers

Let X and Y be proper, normal, connected schemes over a field K, and let f : X → Y be a finite, flat K-morphism which is generically Galois (i.e., the extension of function fields K(Y ) ↪→ K(X) is Galois) with Galois group G. It is well-known that for the Zariski-open complement U ⊆ Y of the branch locus of f , the map f−1(U) → U is a (right) G-torsor. Thus, for any y ∈ U and x ∈ f−1(y), the ex...

متن کامل

Higher Homotopy of Groups Definable in O-minimal Structures

It is known that a definably compact group G is an extension of a compact Lie group L by a divisible torsion-free normal subgroup. We show that the o-minimal higher homotopy groups of G are isomorphic to the corresponding higher homotopy groups of L. As a consequence, we obtain that all abelian definably compact groups of a given dimension are definably homotopy equivalent, and that their unive...

متن کامل

Artin Braid Groups and Homotopy Groups

We study the Brunnian subgroups and the boundary Brunnian subgroups of the Artin braid groups. The general higher homotopy groups of the sphere are given by mirror symmetric elements in the quotient groups of the Artin braid groups modulo the boundary Brunnian braids, as well as given as a summand of the center of the quotient groups of Artin pure braid groups modulo boundary Brunnian braids. T...

متن کامل

On braid groups and homotopy groups

The purpose of this article is to give an exposition of certain connections between the braid groups [1, 3] and classical homotopy groups which arises in joint work of Jon Berrick, Yan-Loi Wong and the authors [8, 2, 32]. These connections emerge through several other natural contexts such as Lie algebras attached to the descending central series of pure braid groups arising as Vassiliev invari...

متن کامل

Nerves, fibers and homotopy groups

Two theorems are proved. One concerns coverings of a simplicial complex D by subcomplexes. It is shown that if every t-wise intersection of these subcomplexes is ðk t þ 1Þ-connected, then for jpk there are isomorphisms pjðDÞDpjðNÞ of homotopy groups of D and of the nerve N of the covering. The other concerns poset maps f : P-Q: It is shown that if all fibers f ðQpqÞ are kconnected, then f induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JP Journal of Geometry and Topology

سال: 2017

ISSN: 0972-415X

DOI: 10.17654/gt020020091